天才基本法 作者:长洱
毫无方向的时刻?”
“听不懂你的问题。”
“就比如你在小学的时候,下定决心要攻克一个特别特别难的数学问题,类似于千禧难题,然后你发现自己没有任何方向,纯粹在痴人说梦。”
“千禧难题啊,其实已经累积非常多前人的研究,不至于毫无方向,顶多是需要花点时间来探索。”
“你就没有那种面对庞大命题、眼前一黑手、特别足无措的时候?”
“有啊。”
“什么时候?”
“知道我还有个女儿的时候。”
老林非常平静。
天气暖融融的,他们坐在花架下,小院里青草勃发,林朝夕却鼻子一酸:“你不要突然煽情!”
“真的。”
老林讲完,转身进厨房烧菜,嘴里还嘀咕:“而且还越喂越庞大。”
——
林朝夕后来想,老林大概也没有说谎。
对他来说,从天而降的女儿,估计是比那些数学难题还要难以处理。
她那么麻烦,吃那么多,不仅需要他的教育,还总需要他帮忙。无论是追男孩还是学习,甚至是每天吃什么,她都离不开他的。
虽然老林嘴上没有说什么,但在一次周末的数学补习班上,老林让窗边的同学拉上窗帘。教室里新装了投影设备,完全走进新时代的样子。
幕布降下,尔后亮起,所有人惊讶地发现,老林竟真准备给他们放片子。
“林老师我们今天不上课吗,我们要看电影吗?”学生们很激动地问。
“上课,看片子也可以上课,这是一堂直击心灵的教育课。”老林摆弄了下设备,屏幕上出现了一行字。
“哇,老师好时尚了!”
“与时俱进、与时俱进。”
老林退坐到教室最后,昏暗的光线里,他靠着黑板,双手抱臂,仰头看着幕布。
幕布忽然变黑,只有一只摇摆的节拍器,林朝夕知道,这部片子开始了。
一开始的时候,她不知道这是部讲述什么的片子,直到轻而腼腆的讲述声响起。
——或许我描述数学研究经历最恰当的比方,就是进入一个黑暗的大宅中。因为,当人进入伸手不见五指的黑暗房间里,就会跌跌撞撞地碰到家具,逐渐你会知道每件家具的位置,而经过六个月的样子,你最终会找到开关,打开灯。灯光突然照亮了一切,你能够清楚看到你所在的位置。
那是很长的一段叙述。
可周围却安静下来,窗帘拉上以后,教室里只有很少一点光。每个孩子都仰头,在看投影幕布上讲述的这个故事。
一切始于三百多近四百年前,数学家费马的一个玩笑。
费马在阅读《算术》时,像三味大学图书馆那些书上发生过的事情一样,他曾在在书旁空白处写下不少笔记,。在第八页页边处,他写下了一条极其简短,却成为世界上最困难数学难题的一条手记。
简单来说,在经过观察后,他认为,除了毕达哥拉斯定理即x^2+y^2=z^2,不存在任何整数解n,使x^n+y^n=z^n。
他甚至还极其调皮地留下一段话,说“关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”
后来当安德鲁·怀尔斯先生,也就是他们现在所观看这部纪录片的主人公真正证明这一简单猜想后,人们才知道,费马先生留下的那段话可能完全是个恶作剧。因为当时的数学发展水平,不足以让他找出那么一种“优美”的解答方式。
之后的叙述就略显复杂,当然,纪录片导演已经竭力想使证明过程变得简单易懂,因此他只采取讲述框架的方式,勾勒出安德鲁·怀尔斯先生证明费马最后定理的艰难过程,可那些远超他们理解能的数学名词还是容易让人困惑。
教室里有窃窃私语。
很多人在问“这是什么”或者“那是什么”……
他们不知道那些东西究竟是什么,却很清楚知道,这个看似结构,背后是远超他们想象的复杂问题。
可当艰难的论证过程不断推进,数学家最终站在黑板前,为全场两百多名数学家讲述自己的全部证明过程
毫无方向的时刻?”
“听不懂你的问题。”
“就比如你在小学的时候,下定决心要攻克一个特别特别难的数学问题,类似于千禧难题,然后你发现自己没有任何方向,纯粹在痴人说梦。”
“千禧难题啊,其实已经累积非常多前人的研究,不至于毫无方向,顶多是需要花点时间来探索。”
“你就没有那种面对庞大命题、眼前一黑手、特别足无措的时候?”
“有啊。”
“什么时候?”
“知道我还有个女儿的时候。”
老林非常平静。
天气暖融融的,他们坐在花架下,小院里青草勃发,林朝夕却鼻子一酸:“你不要突然煽情!”
“真的。”
老林讲完,转身进厨房烧菜,嘴里还嘀咕:“而且还越喂越庞大。”
——
林朝夕后来想,老林大概也没有说谎。
对他来说,从天而降的女儿,估计是比那些数学难题还要难以处理。
她那么麻烦,吃那么多,不仅需要他的教育,还总需要他帮忙。无论是追男孩还是学习,甚至是每天吃什么,她都离不开他的。
虽然老林嘴上没有说什么,但在一次周末的数学补习班上,老林让窗边的同学拉上窗帘。教室里新装了投影设备,完全走进新时代的样子。
幕布降下,尔后亮起,所有人惊讶地发现,老林竟真准备给他们放片子。
“林老师我们今天不上课吗,我们要看电影吗?”学生们很激动地问。
“上课,看片子也可以上课,这是一堂直击心灵的教育课。”老林摆弄了下设备,屏幕上出现了一行字。
“哇,老师好时尚了!”
“与时俱进、与时俱进。”
老林退坐到教室最后,昏暗的光线里,他靠着黑板,双手抱臂,仰头看着幕布。
幕布忽然变黑,只有一只摇摆的节拍器,林朝夕知道,这部片子开始了。
一开始的时候,她不知道这是部讲述什么的片子,直到轻而腼腆的讲述声响起。
——或许我描述数学研究经历最恰当的比方,就是进入一个黑暗的大宅中。因为,当人进入伸手不见五指的黑暗房间里,就会跌跌撞撞地碰到家具,逐渐你会知道每件家具的位置,而经过六个月的样子,你最终会找到开关,打开灯。灯光突然照亮了一切,你能够清楚看到你所在的位置。
那是很长的一段叙述。
可周围却安静下来,窗帘拉上以后,教室里只有很少一点光。每个孩子都仰头,在看投影幕布上讲述的这个故事。
一切始于三百多近四百年前,数学家费马的一个玩笑。
费马在阅读《算术》时,像三味大学图书馆那些书上发生过的事情一样,他曾在在书旁空白处写下不少笔记,。在第八页页边处,他写下了一条极其简短,却成为世界上最困难数学难题的一条手记。
简单来说,在经过观察后,他认为,除了毕达哥拉斯定理即x^2+y^2=z^2,不存在任何整数解n,使x^n+y^n=z^n。
他甚至还极其调皮地留下一段话,说“关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”
后来当安德鲁·怀尔斯先生,也就是他们现在所观看这部纪录片的主人公真正证明这一简单猜想后,人们才知道,费马先生留下的那段话可能完全是个恶作剧。因为当时的数学发展水平,不足以让他找出那么一种“优美”的解答方式。
之后的叙述就略显复杂,当然,纪录片导演已经竭力想使证明过程变得简单易懂,因此他只采取讲述框架的方式,勾勒出安德鲁·怀尔斯先生证明费马最后定理的艰难过程,可那些远超他们理解能的数学名词还是容易让人困惑。
教室里有窃窃私语。
很多人在问“这是什么”或者“那是什么”……
他们不知道那些东西究竟是什么,却很清楚知道,这个看似结构,背后是远超他们想象的复杂问题。
可当艰难的论证过程不断推进,数学家最终站在黑板前,为全场两百多名数学家讲述自己的全部证明过程